Fine-tuning Deep Convolutional Networks for Plant Recognition
نویسندگان
چکیده
This paper describes the participation of the ECOUAN team in the LifeCLEF 2015 challenge. We used a deep learning approach in which the complete system was learned without hand-engineered components. We pre-trained a convolutional neural network using 1.8 million images and used a fine-tuning strategy to transfer learned recognition capabilities from general domains to the specific challenge of Plant Identification task. The classification accuracy obtained by our method outperformed the best result obtained in 2014. Our group obtained the 4th position among all teams and the 10th position among 18 runs.
منابع مشابه
A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملFine-Pruning: Joint Fine-Tuning and Compression of a Convolutional Network with Bayesian Optimization
When approaching a novel visual recognition problem in a specialized image domain, a common strategy is to start with a pre-trained deep neural network and fine-tune it to the specialized domain. If the target domain covers a smaller visual space than the source domain used for pre-training (e.g. ImageNet), the fine-tuned network is likely to be overparameterized. However, applying network prun...
متن کاملOpen-set Plant Identification Using an Ensemble of Deep Convolutional Neural Networks
Open-set recognition, a challenging problem in computer vision, is concerned with identification or verification tasks where queries may belong to unknown classes. This work describes a fine-grained plant identification system consisting of an ensemble of deep convolutional neural networks, within an open-set identification framework. Two wellknown deep learning architectures of VGGNet and Goog...
متن کاملTree-CNN: A Deep Convolutional Neural Network for Lifelong Learning
In recent years, Convolutional Neural Networks (CNNs) have shown remarkable performance in many computer vision tasks such as object recognition and detection. However, complex training issues, such as “catastrophic forgetting” and hyper-parameter tuning, make incremental learning in CNNs a difficult challenge. In this paper, we propose a hierarchical deep neural network, with CNNs at multiple ...
متن کامل